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SUMMARY
Early embryo development requires maternal-to-zygotic transition, during which transcriptionally silent
nuclei begin widespread gene expression during zygotic genome activation (ZGA).1–3 ZGA is vital for early
cell fating and germ-layer specification,3,4 and ZGA timing is regulated by multiple mechanisms.1–5 However,
controversies remain about whether these mechanisms are interrelated and vary among species6–10 and
whether the timing of germ-layer-specific gene activation is temporally ordered.11,12 In some embryonic
models, widespread ZGA onset is spatiotemporally graded,13,14 yet it is unclear whether the transcriptome
follows this pattern. A major challenge in addressing these questions is to accurately measure the timing
of each gene activation. Here, we metabolically label and identify the nascent transcriptome using
5-ethynyl uridine (5-EU) in Xenopus blastula embryos. We find that EU-RNA-seq outperforms total RNA-
seq in detecting the ZGA transcriptome, which is dominated by transcription from maternal-zygotic genes,
enabling improved ZGA timing determination. We uncover discrete spatiotemporal patterns for individual
gene activation, a majority following a spatial pattern of ZGA that is correlated with a cell size gradient.14

We further reveal that transcription necessitates a period of developmental progression and that ZGA can
be precociously induced by cycloheximide, potentially through elongation of interphase. Finally, most
ectodermal genes are activated earlier than endodermal genes, suggesting a temporal orchestration of
germ-layer-specific genes, potentially linked to the spatially graded pattern of ZGA. Together, our study
provides fundamental new insights into the composition and dynamics of the ZGA transcriptome,
mechanisms regulating ZGA timing, and its role in the onset of early cell fating.
RESULTS AND DISCUSSION

Nascent EU-RNA-seq characterizes the composition
and dynamics of ZGA with high sensitivity
Transcript levels in early embryos are dominated by maternal

RNAs preloaded in the egg, whereas newly transcribed RNAs,

including those from maternal-zygotic (MZ) and exclusively zy-

gotic (Z) genes, constitute a small portion during zygotic genome

activation (ZGA) (Figure 1A). Abundant maternal RNAs represent

a major challenge in understanding the scope, timing, and un-

derlying mechanisms regulating ZGA transcription. Recently,

metabolic labeling of newly synthesized RNAs using uridine

analogs, such as 4-thiol-UTP (4s-UTP)15,16 and 5-ethynyl uridine

(5-EU),14,17,18 followed by physical separation of nascent and

maternal RNA pools, has provided new tools to interrogate

ZGA. We previously demonstrated that compared with conven-

tional RNA sequencing (RNA-seq), EU-labeled nascent RNA-seq

(EU-RNA-seq; Figure 1B) enriched biotinylated zygotic tran-

scripts (EU-RNAs) from Xenopus late blastula on streptavidin

beads,14 suggesting its potential for detecting newly transcribed

RNA. To characterize the nascent transcriptome in embryos at

earlier stages, where transcript levels are much lower, we further

optimized the EU-RNA-seq protocol (STAR Methods) and
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performed it on Xenopus embryos at 1-h intervals from 5 to 9 h

post-fertilization (hpf), corresponding to Nieuwkoop and

Faber (NF) stages 7–9, covering the period of pre-ZGA to wide-

spread ZGA. In addition to sequencing the nascent transcripts

(on ‘‘bead’’), we sequenced the flowthrough after separation

(‘‘flowthrough,’’ presumable maternal RNA) and the total RNA

(‘‘all’’) for comparison. We observed that from 5 to 9 hpf, nascent

transcripts of an increasing number of genes enriched in the

‘‘bead’’ dataset compared with ‘‘flowthrough’’ (Figures 1C,

S1A, and S1B), suggesting that EU-RNA-seq captures and en-

riches nascent transcripts. Although we were able to separate

zygotic transcripts from maternal transcripts, we also noticed

some maternal transcripts bound non-specifically to beads.

Therefore, we chose to calculate nascent transcription based

on the net increase of reads, treating those at 5 hpf as back-

ground. To characterize which genes were activated, we filtered

the nascent transcriptome data (STAR Methods), generating a

list of 2,577 genes (Figure S1C; Table S1).

Noticeably, at the time of ZGA widespread onset (7 hpf), over

44% genes were more highly detected using EU-RNA-seq than

total RNA-seq (Figure 1D); an �2- to 16-fold enrichment

(Figure 1E), consistent with a previous observation.14 More

strikingly, activation of 240 genes was uniquely detected by
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Figure 1. Nascent EU-RNA-seq to characterize the composition and dynamics of ZGA with high sensitivity

(A) Schematic of transcript composition during zygotic genome activation in early embryogenesis: from egg to late blastula. Red, transcripts of zygotic genes;

orange, transcripts of maternal-zygotic genes; blue, transcripts of maternal genes.

(B) Schematic describing the EU-RNA-seq methodology. Nascent transcripts are metabolically labeled via 5-ethynyl uridine (5-EU) microinjected in 1-cell Xen-

opus embryos. Total RNAs are isolated for biotinylation via click reaction. The 5-EU-labeled nascent transcripts (red) are captured by streptavidin beads; flow-

through contains maternal transcripts.

(C) Distinguishing nascent transcriptome (‘‘bead’’) versusmaternal transcriptome (‘‘flowthrough’’) reads via RNA-seq from 5 to 9 hpf in blastula embryos. Each dot

represents individual genes with rlog reads averaged from replicates quantified by DESeq2. Dashed lines: 1.5-fold threshold for enrichment.

(D) Nascent reads enrich in ‘‘bead’’ library versus traditional total transcriptome (‘‘all’’) at 7 hpf fromRNA-seq. Each dot represents individual geneswith log2 reads

averaged from replicates quantified by DESeq2. Dashed lines: 1.5-fold threshold for enrichment.

(E) Higher sensitivity for detection of zygotic expression in nascent transcriptome versus total transcriptome at all gene expression levels.

(F) Hundreds of transcripts are uniquely detected by nascent transcriptome. Mean reads from duplicates (mean ± SE) for 240 genes detected from nascent EU-

RNA (red) and total RNA (orange), respectively.

(G) Percentage of genes expressed during ZGA that are classified as zygotic-only genes (Z) and maternal-zygotic gene (MZ).

(H and I) Percentage of total library reads from transcripts of zygotic-only genes (Z) and maternal-zygotic gene (MZ) from 5 to 9 hpf.

(J and K) Gene ontology (GO) analysis of MZ (J) and Z (K) genes.

See also Figure S1 and Tables S1 and S2.
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EU-RNA-seq (Figure 1F; Table S2). Assay for transposase-

accessible chromatin using sequencing (ATAC-seq) from early

gastrula stage (NF stage 10) revealed that the promoter regions

in most of these genes uniquely detected by EU-RNA-seq were

accessible (Figures S1M and S1N), suggesting that these genes

are likely actively transcribed. To further validate the sensitivity of

EU-RNA-seq, we compared the levels of the most highly tran-

scribed genes identified by Session et al.19 and Yanai et al.20

in our nascent versus total transcriptome data. Both compari-

sons showed an �3- to 4-fold enrichment in the EU-RNA-seq

(Figures S1D–S1F). This improved sensitivity also revealed

earlier expression of a subset of genes in the zygotic transcrip-

tome (Figure S1G). Together, the EU-RNA-seq enabled us to

detect nascent transcription in early Xenopus embryos with un-

precedented sensitivity and specificity.

Next, we wondered what fraction of the transcriptional output

of large-scale ZGA is comprised of transcripts from MZ and Z

genes. In traditional gene profiling, it is a challenge to charac-

terize the activation of MZ genes—the presence of highmaternal

RNA levels can mask the onset of nascent transcription. Based

on the presence of transcripts in the egg, we categorized the

nascent list of 2,577 genes into Z genes that do not contain reads

in the egg (%5 reads) and MZ genes that contain transcripts in

the egg (>5 reads) (Figure S1C). We found that among the genes

activated from 5 to 9 hpf, MZ genes accounted for �70% total

reads and Z genes only �10%, and both increased over time

(Figures S1H–S1L). The ratio of MZ:Z genes was �4:1, and the

ratio of reads for MZ:Z genes was �8:1, which was relatively

constant over time (Figures 1G–1I). These data suggest that

compositionally, ZGA transcriptional output is dominated by

MZ gene expression, consistent with previous observations,21

although zygotic-only transcripts are essential for develop-

ment.22–24 Gene ontology (GO) analysis revealed that MZ genes

are mainly involved in RNA processing, splicing, and transport

(Figure 1J), whereas Z genes are responsible for patterning,

gastrulation, cell fate commitment, and germ-layer specification

(Figure 1K). Thus, onset of widespread ZGA is dominated by a

handoff from maternal-to-zygotic control of core regulatory

genes, whereas zygotic-only factors that pattern later develop-

ment represent a smaller portion of the transcriptional output.

In summary, the highly sensitive EU-RNA-seq methodology re-

veals a greater depth to the composition and dynamics of

ZGA, offering essential new insights on genome regulation in

early embryo development.

EU-RNA-seq on segmented embryos uncovers spatial
patterns of single-gene activation
We previously performed nascent EU-RNA imaging in single

cells of whole-mount Xenopus early embryos and observed a

stereotypical spatiotemporal pattern of large-scale ZGA, which

initiates first in small cells at the animal pole (AP) and is delayed

in large cells at the vegetal pole (VP), dependent on cells reach-

ing a threshold size13,14 (Figure 2A). However, an open question

was whether the global pattern of ZGA held at the single-gene

level for most genes. To address this question, we performed

EU-RNA-seq on the dissected regions of AP and VP from em-

bryos at 5–9 hpf (Figure 2A). We chose these regions because

they display a striking phase shift in ZGA timing of �90 min,14

and they represent the presumptive ectoderm (the AP) and
4316 Current Biology 32, 4314–4324, October 10, 2022
endoderm (the VP). Due to the lower quantity of material, we

refined the AP-VP nascent transcriptome by selecting genes

that undergo consistent continuous activation in the AP or VP re-

gions at 5–9 hpf, which resulted in a list of 882 genes for further

characterization of their spatial activation patterns (Figure S2A).

To determine the onset time for each gene at the AP and the VP,

respectively, we adapted a previously described method to

fit the mean-normalized reads at 5–9 hpf with a smooth spline25

(Figure S2B). By setting thresholds of expression (STAR

Methods), we eventually classified 476 genes into five categories

of activation patterns based on their spatial expression profiles

(Figures 2B and S2C; Table S3). We verified the activation pat-

terns of a subset of transcripts using RT-PCR and quantitative

real-time PCR (Figures S2D and S2E). The existence of various

patterns of gene activation (Figures S2F–S2I) is consistent with

the view that the embryo is patterned during early embryogen-

esis,23 and potentially distinct mechanisms regulate ZGA. As ex-

pected, the ‘‘VP regional’’ category is replete with genes involved

in endoderm-related development (Figure S2G), including the

bix1, mixer, sox17, and nodal family genes (Table S3), consistent

with the VP as the physical location of the presumptive endo-

derm cells.26,27 Genes uniquely activated or activated early in

the VP may be regulated by region-specific maternal determi-

nants, such as VegT,28–30 that prepattern early embryos.

Intriguingly, among the five spatiotemporal patterns, the pre-

dominant category is the ‘‘AP early, VP delay’’ (�56% genes)

(Figures 2B, 2C, and S2C), paralleling the global spatiotemporal

patterning of ZGA from EU imaging, suggesting that these genes

could be regulated by a cell-size- or DNA:cytoplasm-ratio-

dependent mechanism.14 GO analysis of this category revealed

functional enrichment of ectoderm-related development such

as epithelial tube morphogenesis and eye development

(Figure S2F), consistent with the role of the AP as the physical

location of the presumptive ectoderm. Separately, �13% of

genes show an activation pattern similar in space and time

(Figures 2B, 2C, S2C, and S2I), potentially consistent with a timer

mechanism. The observation of diverse patterns is also consis-

tent with previous studies suggesting that ZGA includes

expression of distinct subsets of genes regulated by distinct

mechanisms.6,7

In summary, our regional nascent transcriptome analysis re-

vealed patterning that is consistent with a classic developmental

control view but also previously underappreciated major spatial

and temporal pattern of gene activation, consistent with cell-

size- or DNA:cytoplasm-ratio-dependent ZGA regulation. The

results reveal that distinct modes of regulation likely control

distinct subsets of gene expression patterns at the canonical

onset of widespread ZGA and thatmore than half follow a pattern

tied to the cell size gradient in the Xenopus blastula. Future

studies are warranted to dissect the respective mechanisms un-

derlying these distinct expression patterns.

Reconciling mechanisms that regulate ZGA timing
Multiple mechanisms have been suggested to regulate ZGA

timing in various species,1–5 including a timer,6,17,21,31,32DNA:cy-

toplasm ratio,7,14,25,33–38 and cell-cycle elongation.8–10,15,18,39–41

However, these mechanisms may work in concert or be interre-

lated, and their relative contribution to ZGA onset timing in

embryogenesis is debated.6–10 We reasoned that manipulating
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Figure 2. EU-RNA-seq on segmented embryos uncovers spatial patterns of single-gene activation
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See also Figure S2 and Table S3.
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the regulatory parameters at various phases of development

and measuring nascent transcription would allow us to distin-

guish the contributions of distinct mechanisms. To this end, we

treated EU-injected embryos at various pre-ZGA stages with

cycloheximide (CHX), an inhibitor of translation that has been

widely used for arresting Xenopus embryos in interphase by

administration to the culture medium,42–47 and analyzed its

effect on nascent transcription by EU-RNA imaging (Figure 3A).
Interestingly, we observed that CHX impacts nascent transcrip-

tion in a stage-dependent manner—no transcription for 3–7.5

hpf arrest, modest transcription for 4–7.5 hpf arrest, and abun-

dant transcription for 5–7.5 hpf arrest (Figure 3B). This result sug-

gests that a developmental window is essential for the embryo

gaining transcriptional competence before ZGA, consistent

with a recent finding in zebrafish,42 potentially by accumulating

maternal translation of transcription activators such as the
Current Biology 32, 4314–4324, October 10, 2022 4317



A B

Named
19%

Unnamed
81%

G

C

Percent Genes Induced Gene Annotation:
Uninduced SubsetDown

4.8% 

Similar
 94%

Up
1.2%

Induction: Control, 7.5 vs 5 hpf CHX vs Control, 7.5 hpf, ZGA

F H

D E

0

5

10

15

0 5 10 15
Control 5 hpf (log2 Reads)

C
H

X
 7

.5
 h

pf
 (

lo
g2

 R
ea

ds
)

Up

Down
Similar

Up

Down
Simila

0

5

10

15

0 5 10 15
Control 5 hpf (log2 Reads)

C
on

tr
ol

 7
.5

 h
pf

 (
lo

g2
 R

ea
ds

)

0

5

10

15

0 5 10 15
Control 7.5 hpf (log2 Reads)

C
H

X
 7

.5
 h

pf
 (

lo
g2

 R
ea

ds
)

Motif Enrichment

HAP2, HAP3, NFYA, NFYC

Pit1, A1CF, Dlx3, Sox5

FOXK1, FKH1, FOXN3, FOXM1, FOXK2

Slug, TCF4, ASCL1, ttk, TCF12, OSR2, TCF3

Sox17, HAP2, Sox8, NFIX

Smad3, Smad4, Smad2, ZBTB26

TBP, KHDRBS1, Hoxa11, CDX4

TEAD4, SOX2, (POU,Homeobox,HMG)

SWI5, ACE2, SAMD4A

NFIC, MATR3, HAP2, NFIX, XBP1

CCAAT−box 
binding proteins

Forkhead−box
family

CCAAT−box binding proteins

Smad family

TATA−box binding proteins

0 5 10 15 20 25 30

−log10 P−value

20

40

60

80

100

Fold
Enrichment

Up

Down
Similar

Up

Down
Similar

Induction: CHX, 7.5 vs 5 hpf

CHX vs Control, 7.5 hpf, ZGA 

Control CHX Regimen (imaged at 7.5 h)

D
N

A
EU

-R
N

A

5.5 hpf 7.5 hpf 3-7.5 hpf 4-7.5 hpf 5-7.5 hpf 5-7.5 hpf 
+ α-Ama.

I

K L

J

CHX Regimen

Imaging &
EU-RNA-seq

hpf 21 3 4 5 6 7 8

Microinject
EU

Cell # 41 16 64 256 1000 4000

Em
pi

ric
al

 Z
G

A

Summary: CHX Induces Premature ZGA

0

2e+5

4e+5

6e+5

8e+5

N
uc

le
ar

 E
U

-R
N

A
Am

ou
nt

(B
ac

kg
ro

un
d 

C
or

re
ct

ed
)

Nascent Transcription

** **** ****

6 hpf 6.5 hpf 7 hpf

Control
CHX

Imaging

hpf 21 3 4 5 6 7 8

Microinject
EU

Cell # 41 16 64 256 1000 4000

Em
pi

ric
al

 Z
G

A

CHX
Regimen

D
N

A
EU

-R
N

A

6 hpf 6.5 hpf 7 hpf 6 hpf 6.5 hpf 7 hpf

Control CHX Regimen (treated from 5 hpf)

Early
ZGA

hpf 21 3 4 5 6 7 8

CH
X

Co
nt

ro
l

Tr
an

sc
rip

tio
n

ZGA Timing Single-cell Transcription

C
H

X
C

on
tr

ol

Empirical onset

high

Tr
an

sc
rip

tio
n

low

ZGA Onset Window
Time

(legend on next page)

ll

4318 Current Biology 32, 4314–4324, October 10, 2022

Report



ll
Report
pioneering pluripotency factors21,32 and impacting chromatin re-

modeling.17,48 Notably, the highly transcribing embryos arrested

from 5 to 7.5 hpf only contain �500 cells (versus �5,000 cells in

control embryos at 7.5 hpf; 3–4 cell cycles behind the control)

in which DNA synthesis is arrested42 (Figure S3A), and the DNA:-

cytoplasm ratio is far below the threshold for ZGA onset.14 This

suggests that once the embryo gains transcriptional compe-

tence, prolonged arrest in interphase may enable nascent

transcript accumulation, although the possibility of cell-cycle-in-

dependent activities, such as translational inhibition of potential

transcriptional inhibitors, cannot be excluded.

We next wondered whether nascent transcription in CHX-ar-

rested embryos represents bona fide ZGA. To test this, first,

we co-microinjected EU with a-amanitin, an inhibitor of RNA po-

lymerase II (RNAPII), and found that a majority of EU-RNA signal

was abolished, suggesting RNAPII-dependent transcription in

CHX-arrested embryos (Figure 3B). We then performed

EU-RNA-seq to compare the nascent transcriptome between

7.5 hpf control and the CHX-arrested embryos from 5 to 7.5

hpf. Surprisingly, 94% of the genes were similarly transcribed,

and only 4.8% and 1.2% of the genes were downregulated

and upregulated by CHX, respectively (Figures 3C–3F and

S3B–S3D). A majority of the CHX-downregulated genes are un-

named and unannotated (Figures 3G and S3E–S3G), although
Figure 3. Reconciling mechanisms that regulate ZGA timing

(A) Experimental design to probe effect of cycloheximide (CHX) treatment on ZG

CHX at 3, 4, and 5 hpf, respectively; and analyzed for nascent transcription by co

timing in normal embryos. Estimated cell numbers at each hpf are shown for nor

(B) Imaging nascent transcript (EU-RNA) accumulation in blastomere nuclei of w
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(I) Experimental design to test whether CHX treatment induces premature ZGA. Em

and imaged for nascent transcription at 6, 6.5, and 7 hpf, respectively. The red lin

each hpf are shown for control embryos.

(J) Imaging of nascent transcription (EU-RNA) in nuclei of blastomeres on the anim

Z-projections from individual embryo substacks are shown. Observation of prema

6, 5 to 6.5, and 5 to 7 hpf. Nascent transcription is largely absent in control embryos

7 hpf. Scale bars, 50 mm.

(K) Quantification of nascent transcription in control and CHX-arrested embryo

multiplying the integrated nuclear EU-RNA signal after cytoplasmic background

embryos were analyzed for each group. Data are represented as mean + SD, and

**p < 0.01; ****p < 0.0001.

(L) Schematic summary of precocious ZGA initiated by CHX treatment. Left: C

competence. Right: CHX treatment promotes nascent transcript accumulation t

dicates no or low (gray) to high (red) transcription in the nucleus. The red dash

embryos.

See also Figure S3.
they seem to be involved developmental regulation (Figure 3H);

in contrast, the majority of the CHX-upregulated genes are

named and annotated (Figure S3F) and are enriched in the ecto-

derm-related development (Figures S4E and S4F). These data

suggest that CHX arrest induces nearly full ZGA, despite its

differential impact on subsets of the genome. Notably, this com-

parable level of transcription at 7.5 hpf was reached by the CHX-

arrested embryo (�500 cells) that contains �10 times fewer

nuclei and DNA template than the control embryo (�5,000 cells),

suggesting higher and possibly earlier transcriptional output per

nucleus in CHX-arrested embryos.

To determine whether CHX treatment induces early ZGA, we

treated embryos with CHX starting from 5 hpf, at which embryos

had gained transcriptional competence, and examined nascent

transcription at time points before the canonical onset of wide-

spread ZGA (Figure 3I). Remarkably, nascent transcription

readily occurred upon CHX treatment from 5 to 6 or 5 to 6.5

hpf, when transcription is not detectable in control embryos

even though they contain many fewer nuclei due to the arrest

(Figures 3J, 3K, and S3H). Most strikingly, upon CHX treatment

for 5 to 7 hpf transcriptional output per nucleus is 14.8-fold

higher (Figure 3K), in embryos �3 divisions behind control

embryos (inferred from cell volume, Figure S3H). Furthermore,

individual zygotic genes could be detected earlier and higher
A regulation. Embryos were microinjected with EU at 1-cell stage; treated with

nfocal imaging or EU-RNA-seq at 7.5 hpf. The red line indicates empirical ZGA

mal embryos.

hole-mount embryos. Maximum-intensity Z-projections of several slices from

trol embryos, prior to ZGA (5.5 hpf) and at the canonical onset of widespread

X from 3 to 7.5, 4 to 7.5, and 5 to 7.5 hpf, respectively. DNA channel illustrates

ndicating prolonged arrest in interphase. Nascent transcription is absent from

sted embryos is more heterogenous, but no EU-RNA was observed in nuclei

7.5 hpf show strong levels of nascent transcription, similar to and exceeding

atment (bottom). Scale bars, 50 mm.

sted from 5 to 7.5 hpf. Each dot represents individual genes from the selected

The differentially enriched genes in each group are labeled in red and blue,

cumulation of nascent reads from 5 to 7.5 hpf in control embryos (C) and from 5

ds during widespread ZGA (7.5 hpf) for control embryos versus embryos CHX-

espread induction of zygotic genes normally induced during ZGA. Percentage

ubject to 5–7.5 hpf CHX treatment that are upregulated (red), downregulated

t with CHX treatment from 5 to 7.5 hpf. Over 80% do not have assigned gene

in response to CHX arrest and prolonged interphase.

bryos were microinjected with EU at 1-cell stage, treated with CHX from 5 hpf,

e indicates ZGA timing in normal embryos at 22�C. Estimated cell numbers at

al pole of whole-mount control and CHX-arrested embryos. Maximum intensity

ture ZGA—nascent transcription—in CHX-arrested embryos treated from 5 to

at 6 and 6.5 hpf and beginningwidespread accumulation in control embryos at

s in (J). The nuclear EU-RNA amount in blastomere nuclei was calculated by

subtraction by the nucleus volume. A total of 80–160 cells from at least three

statistical significance was determined by one-way ANOVA (Fisher’s LSD test).

HX induces early ZGA from 5 hpf after embryos have gained transcriptional

o a higher level and at earlier times in individual nuclei. The color gradient in-

ed vertical line indicates empirical widespread ZGA onset timing for control
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Figure 4. Timing of germ-layer initiation is correlated to spatially graded onset of ZGA

(A) Average transcript levels for ectoderm and endoderm genes in blastula embryos. Nascent reads averaged from replicate embryos. Red, set of ectoderm

genes (N = 111 genes); blue, set of endoderm genes (N = 172 genes) at 5–9 hpf. Mean ± SE.

(B) Distribution of time of onset for transcriptional activation of individual genes within ectoderm (red) and endoderm (blue) sets.

(C) Cumulative density of time of onset for transcriptional activation for ectoderm (red) and endoderm (blue) genes.

(D and E) Heatmaps showing Z scores for induction of ectoderm (D) and endoderm (E) genes in control embryos at 7.5 hpf versus embryos treated with CHX from

5 to 7.5 hpf. Data are selected genes that have detectable transcriptional induction in control embryos from 5 to 7.5 hpf. Pie chart shows fraction of genes similar

(gray) or upregulated (red) or downregulated (blue), comparing CHX-treated versus control embryos; threshold 1.5-fold difference.

(F) Cumulative density showing induction relative to control of germ-layer genes in CHX-treated embryos at 7.5 hpf. Red, ectoderm; blue, endoderm.

(G) Profile plots for ChIP-seq peaks of RNAPol II for ectoderm and endoderm genes, respectively, in embryos at stage 10.5. Data fromSession et al.19 The regions

of transcription start site (TSS) ±2kb from two replicates are shown. The level of RNA Pol II binding in the indicated regions is higher in ectoderm genes than in

endoderm genes.

(H) Composite model and pathway describing regulated ZGA onset. Widespread ZGA is inhibited by rapid cell cycles in cleavage-stage embryos. As cell size

reduces, due to cell division without cell growth, a DNA:cytoplasm ratio threshold is reached, promoting cell-cycle elongation and allowing for accumulation of

nascent zygotic transcripts. Cell-cycle elongation is sufficient to promote large-scale ZGA in embryos that have achieved transcriptional competence. Translation

of maternal TFs and histone acetyltransferases are necessary to generate transcriptionally competent embryos. Xenopus blastula embryos contain a gradient of

cell sizes which achieve widespread ZGA onset at different times. A majority of the nascent transcriptome during ZGA displays early activation in smaller cells at

(legend continued on next page)
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levels in embryos arrested with CHX starting at 5 hpf compared

with control embryos by RT-PCR (Figure S3I). Together, these

data suggest that CHX induces precocious ZGA onset by

increasing transcriptional output in individual nuclei (Figure 3L).

These findings agree with an interpretation that short cell cycle

can repress nascent transcription and cell-cycle elongation

can promote large-scale ZGA after an embryo gains transcrip-

tional competence, although it cannot be excluded that separate

translational inhibition by CHX may also contribute to transcrip-

tion.10,42 Noticeably, our finding is consistent with recent obser-

vations made in other embryonic systems, including zebrafish17

and Drosophila,7,8 that cell-cycle arrest increases zygotic

transcription. Our study is limited by the inability of using similar

regimens of specific cell-cycle inhibitors such as Cdk inhibitors

which did not rapidly block embryo cleavages (Figure S3J).

Timing of germ-layer initiation is linked to spatially
graded onset of ZGA
Many germ-layer-specific genes are transcribed in the blastula

embryo during ZGA. In Xenopus, we previously found that

cells of the AP—the presumptive ectoderm—initiate large-scale

ZGA �90 min earlier than cells of the VP—the presumptive

endoderm,14 which is linked to the AP cells reaching a threshold

cell size for ZGA more quickly. We wondered whether the

spatiotemporal patterning of ZGAmight contribute to a temporal

ordering of germ-layer-specific gene activation, the chronology

of which is debated in different model embryos.11,12 To deter-

mine whether a temporal order of germ-layer-specific gene

activation exists in Xenopus embryos, we focused on a list of

marker genes that had been experimentally defined and

validated in gastrula embryos for the ectoderm26 and the endo-

derm,27 respectively. We discovered that on average, the ecto-

dermal genes are more highly transcribed, and a majority are

activated earlier, than the endodermal genes from 5 to 9 hpf

(Figures 4A–4C and S4A–S4D). Chromatin immunoprecipitation

sequencing (ChIP-seq) analysis for RNAPII and H3K4me3,19

marks for active transcription, revealed higher transcriptional ac-

tivity in the ectodermal genes than the endodermal genes that

persist in early gastrula (Figures 4G and S4I). However, it should

be noted that several endodermal genes are activated early (Fig-

ure 4B), consistent with previous findings that these genes are

transcribed early in development, potentially regulated by the

maternal T-box factor VegT.49,50 These data, together with those

from the AP/VP spatial patterns14 (Figures 2 and S2), suggest

that the timing of germ-layer initiation is largely correlated with

the regional timing of ZGA onset and that distinct mechanisms

may regulate the germ-layer-specific activation at the single-

gene level.

Analysis of CHX-upregulated genes revealed enrichment in

ectoderm-related development (Figures S4E and S4F). We

wondered whether the ectodermal genes could be upregulated

by CHX treatment from 5 to 7.5 hpf. Most of the ectodermal

genes (68.3%) were hyperactivated, and only 15% genes were
the animal pole (AP)— the presumptive ectoderm—and later activation in larg

sequence of germ-layer inductionmay be linked to temporally graded onset of wid

clarity, the schematic of embryo is shown rotated 90� counterclockwise along the

N/C ratio may affect ZGA transcription in a cell-cycle-independent manner.

See also Figure S4.
downregulated in CHX-arrested embryos (Figures 4D and

S4A); in contrast, most of the endodermal genes (62%) were

downregulated, and only 16.3% genes were upregulated in

CHX-arrested embryos (Figures 4E and S4B). The striking differ-

ence in the impact of CHX on expression germ-layer genes

(Figures 4D–4F and S4A–S4D) suggests that the ectoderm

genes might be primed for activation and thus more susceptible

to transcription via cell-cycle arrest. We did not observe a corre-

lation between CHX-induced expression and time of onset

(Figures S4G and S4H). In summary, our data suggest that the

timing of germ-layer-specific gene activation may be linked to

the timing of ZGA in different regions of the embryo. However,

our study demonstrates only a correlative relationship between

spatially patterned ZGAand germ-layer-specific gene activation,

and future studies are required to directly probe the causal link

between these two, ideally by manipulating cell size and ZGA

onset gradient and measuring the regional timing of transcrip-

tional initiation for germ-layer markers.

Composite model for ZGA
The combination of nascent imaging and transcriptome profiling

coupled to embryo arrest at different times provided tools to link

and parse regulatory mechanisms controlling ZGA timing. Our

data are consistent with a model in which ZGA timing is

regulated by the cell-cycle elongation once an embryo gains

transcriptional competence and cells achieve a threshold size

or DNA:cytoplasm ratio (Figures 4H, S4J, and S4K). In multiple

species, including Drosophila and zebrafish, early rapid cell

cycles block zygotic transcription, leading to abortive or short

transcripts.15,18 We interpret the inhibitory effect of short cell

cycles to explain why a normal Xenopus embryo does not initiate

widespread zygotic transcription at 5 hpf, even though it is likely

transcriptional competent, based on our CHX arrest data (from 5

to 7.5 hpf). Importantly, artificial or natural lengthening of cell

cycle promotes zygotic transcription.7,8,17 For vertebrates,

maturation and lengthening of the early cell cycle are linked to

cells reaching a threshold size,38,51 and the DNA:cytoplasm ratio

and histone levels may also regulate the timing of the cell-cycle

lengthening.7,10,33,52,53 This logic helps explain how cells ar-

rested at too low of DNA:cytoplasm ratio, in the CHX-arrested

embryos from 5 to 7.5 hpf, nonetheless initiate ZGA concomitant

with a longer time spent arrested in interphase. Linking these

concepts, we propose a composite model in which Xenopus

embryos must first achieve transcriptional competence, a

necessary step, and then wait to initiate widespread ZGA until

cell-cycle elongation occurs, coupled to when blastomeres

achieve a threshold cell size and DNA:cytoplasm ratio.

Overall, our work demonstrates that EU-RNA-seq is a highly

sensitive method to characterize ZGA and determine the

dynamics of transcription, useful for dissecting regulatory mech-

anisms underlying genome activation. Using this strategy, we

identify distinct spatiotemporal gene expression patterns from

segmented embryos, suggesting multiple modes of ZGA
er cells at the vegetal pole (VP)—the presumptive endoderm. Chronological

espread ZGA in the blastula. Red, ectoderm genes; blue, endoderm genes. For

AV axis from the normal orientation of the embryo. Dotted arrow indicates that
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regulation in Xenopus, and unveil a potential link between ZGA

patterning and germ-layer initiation in early development. The

methodology is applicable to other embryonic systems, compat-

ible with other high-throughput multi-omics technologies at the

single-cell level, which will catalyze new insights into genome

regulation and cell fating in development.

STAR+METHODS

Detailed methods are provided in the online version of this paper

and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY
B Lead contact

B Materials availability

B Data and code availability

d EXPERIMENTAL MODEL AND SUBJECT DETAILS

d METHOD DETAILS

B In vitro fertilization (IVF)

B Microinjection, cycloheximide treatment and collection

of embryos

B Cell cycle inhibitor incubation

B RNA isolation, biotinylation and purification

B EU-RNA-seq and analysis

B Functional enrichment analysis

B ATAC-seq and ChIP-seq analysis

B RT-PCR and real-time PCR

B Confocal imaging nascent transcripts in wholemount

embryos ad image analysis

d QUANTIFICATION AND STATISTICAL ANALYSIS

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.

cub.2022.07.078.

ACKNOWLEDGMENTS

Wewould like to thank the members of the Good, Klein, Mullins, Zaret, Berger,

Bonasio, Lampson, Black, Greenberg, and Grishchuk labs at the University of

Pennsylvania for helpful discussion and providing feedback. We particularly

thank Dr. Peter Klein, Lily Einstein, Wenchao Qian, Boao Xia, Jorge Dabdoub,

Haidar Ahmed, and RachelWells for providing help on frogs; Dr. Katherine Pal-

ozola (Ken Zaret Lab) for providing and discussing protocols for EU-RNA-seq;

Dr. Jamie Kwasnieski (David Bartel Lab) for providing an alternative protocol

for biotinylating EU-RNA; Dr. Dario Nicetto (Ken Zaret Lab) and Dr. Lihong

Sheng (Roberto Bonasio Lab) for providing technical help on RNA-seq; and

Dr. John Tobias (Penn Genomic Analysis Core) for providing help on RNA-

seq data analyses. We also thank the Epigenetics Institute for training and

providing instruments, the Cell and Developmental Biology Microscopy Core

for imaging support, and National Xenopus Resource (NXR) for training and

guidance on frogs. This work was supported in part by Burroughs Wellcome

Fund, Charles E. Kaufman Foundation, the March of Dimes, and the National

Institute of General Medical Sciences (R35GM128748) (M.C.G.) and the Eu-

nice Kennedy Shriver National Institute of Child Health and Human Develop-

ment (R03HD105802) (H.C.).

AUTHOR CONTRIBUTIONS

Conceptualization, H.C. and M.C.G.; methodology, H.C. and M.C.G.; re-

sources, H.C. and M.C.G.; investigation, H.C.; software, H.C.; formal analysis,

H.C.; writing – original draft, H.C.; writing – review & editing, H.C. and M.C.G.;
4322 Current Biology 32, 4314–4324, October 10, 2022
visualization, H.C. and M.C.G.; supervision, M.C.G.; funding acquisition,

M.C.G.

DECLARATION OF INTERESTS

The authors declare no competing interests.

Received: February 1, 2022

Revised: April 25, 2022

Accepted: July 29, 2022

Published: August 24, 2022

REFERENCES

1. Vastenhouw, N.L., Cao, W.X., and Lipshitz, H.D. (2019). The maternal-to-

zygotic transition revisited. Development 146, dev161471. https://doi.org/

10.1242/dev.161471.

2. Jukam, D., Shariati, S.A.M., and Skotheim, J.M. (2017). Zygotic genome

activation in vertebrates. Dev. Cell 42, 316–332. https://doi.org/10.1016/

j.devcel.2017.07.026.

3. Lee, M.T., Bonneau, A.R., and Giraldez, A.J. (2014). Zygotic genome acti-

vation during the maternal-to-zygotic transition. Annu. Rev. Cell Dev. Biol.

30, 581–613. https://doi.org/10.1146/annurev-cellbio-100913-013027.

4. Schulz, K.N., and Harrison, M.M. (2019). Mechanisms regulating zygotic

genome activation. Nat. Rev. Genet. 20, 221–234. https://doi.org/10.

1038/s41576-018-0087-x.

5. Pálfy, M., Joseph, S.R., and Vastenhouw, N.L. (2017). The timing of zy-

gotic genome activation. Curr. Opin. Genet. Dev. 43, 53–60. https://doi.

org/10.1016/j.gde.2016.12.001.

6. Lu, X., Li, J.M., Elemento, O., Tavazoie, S., and Wieschaus, E.F. (2009).

Coupling of zygotic transcription to mitotic control at the Drosophila

mid-blastula transition. Development 136, 2101–2110. https://doi.org/

10.1242/dev.034421.

7. Syed, S., Wilky, H., Raimundo, J., Lim, B., and Amodeo, A.A. (2021). The

nuclear to cytoplasmic ratio directly regulates zygotic transcription in

Drosophila through multiple modalities. Proc. Natl. Acad. Sci. USA 118.

e2010210118. https://doi.org/10.1073/pnas.2010210118.

8. Strong, I.J.T., Lei, X., Chen, F., Yuan, K., and O’Farrell, P.H. (2020).

Interphase-arrested Drosophila embryos activate zygotic gene expression

and initiate mid-blastula transition events at a low nuclear-cytoplasmic ra-

tio. PLoS Biol. 18. e3000891. https://doi.org/10.1371/journal.pbio.30

00891.

9. Edgar, B.A., Kiehle, C.P., and Schubiger, G. (1986). Cell cycle control by

the nucleo-cytoplasmic ratio in early Drosophila development. Cell 44,

365–372.

10. Collart, C., Allen, G.E., Bradshaw, C.R., Smith, J.C., and Zegerman, P.

(2013). Titration of four replication factors is essential for the Xenopus lae-

vis midblastula transition. Science 341, 893–896. https://doi.org/10.1126/

science.1241530.

11. Argelaguet, R., Clark, S.J., Mohammed, H., Stapel, L.C., Krueger, C.,

Kapourani, C.A., Imaz-Rosshandler, I., Lohoff, T., Xiang, Y., Hanna,

C.W., et al. (2019). Multi-omics profiling of mouse gastrulation at single-

cell resolution. Nature 576, 487–491. https://doi.org/10.1038/s41586-

019-1825-8.

12. Hashimshony, T., Feder, M., Levin, M., Hall, B.K., and Yanai, I. (2015).

Spatiotemporal transcriptomics reveals the evolutionary history of the

endoderm germ layer. Nature 519, 219–222. https://doi.org/10.1038/na-

ture13996.

13. Chen, H., and Good, M.C. (2020). Imaging nascent transcription in whole-

mount vertebrate embryos to characterize zygotic genome activation.

Methods Enzymol. 638, 139–165. https://doi.org/10.1016/bs.mie.2020.

03.002.

14. Chen, H., Einstein, L.C., Little, S.C., and Good, M.C. (2019).

Spatiotemporal patterning of zygotic genome activation in a model

https://doi.org/10.1016/j.cub.2022.07.078
https://doi.org/10.1016/j.cub.2022.07.078
https://doi.org/10.1242/dev.161471
https://doi.org/10.1242/dev.161471
https://doi.org/10.1016/j.devcel.2017.07.026
https://doi.org/10.1016/j.devcel.2017.07.026
https://doi.org/10.1146/annurev-cellbio-100913-013027
https://doi.org/10.1038/s41576-018-0087-x
https://doi.org/10.1038/s41576-018-0087-x
https://doi.org/10.1016/j.gde.2016.12.001
https://doi.org/10.1016/j.gde.2016.12.001
https://doi.org/10.1242/dev.034421
https://doi.org/10.1242/dev.034421
https://doi.org/10.1073/pnas.2010210118
https://doi.org/10.1371/journal.pbio.30<?show [?tjl=20mm]&tjlpc;[?tjl]?>00891
https://doi.org/10.1371/journal.pbio.30<?show [?tjl=20mm]&tjlpc;[?tjl]?>00891
http://refhub.elsevier.com/S0960-9822(22)01232-5/sref9
http://refhub.elsevier.com/S0960-9822(22)01232-5/sref9
http://refhub.elsevier.com/S0960-9822(22)01232-5/sref9
https://doi.org/10.1126/science.1241530
https://doi.org/10.1126/science.1241530
https://doi.org/10.1038/s41586-019-1825-8
https://doi.org/10.1038/s41586-019-1825-8
https://doi.org/10.1038/nature13996
https://doi.org/10.1038/nature13996
https://doi.org/10.1016/bs.mie.2020.03.002
https://doi.org/10.1016/bs.mie.2020.03.002


ll
Report
vertebrate embryo. Dev. Cell 49, 852–866.e7. https://doi.org/10.1016/j.

devcel.2019.05.036.

15. Heyn, P., Kircher, M., Dahl, A., Kelso, J., Tomancak, P., Kalinka, A.T., and

Neugebauer, K.M. (2014). The earliest transcribed zygotic genes are short,

newly evolved, and different across species. Cell Rep. 6, 285–292. https://

doi.org/10.1016/j.celrep.2013.12.030.

16. Holler, K., Neuschulz, A., Drewe-Boß, P., Mintcheva, J., Spanjaard, B.,
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Matthew

Good (mattgood@pennmedicine.upenn.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability

d The RNA-seq data generated in this study have been deposited at Gene Expression Omnibus (GEO) and are publicly available

as of the date of publication. Accession numbers are listed in the key resources table.

d The paper does not report original code.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Experiments in this study were performed using the African clawed frog Xenopus laevis according to the Animal Use Protocol

approved by the Institutional Animal Care and Use Committee (IACUC) at the University of Pennsylvania. Mature Xenopus laevis

females and males were purchased from Nasco, and they were maintained at 20�C in tanks of a recirculating aquatic system.

The females were used for procuring eggs andmales were used for preparing sperms, the procedures of which have been described

previously.14 Briefly, to induce ovulation, 100 U of pregnant mare serum gonadotropin (PMSG) and 500 U of human chorionic gonad-

otropin (HCG) were sequentially injected into the dorsal lymph sac of female adult frogs at 3-7 days and 14-15 h, respectively, before

experiment. Before egg collection, the females were temporarily kept at 16 �C in 13Marc’s Modified Ringer’s (13MMRwas diluted

from the stock 203MMR that includes 100mMHEPES pH 7.8, 2mMEDTA, 2MNaCl, 40mMKCl, 20mMMgCl2, and 40mMCaCl2).

Eggs were obtained by gently squeezing the female frogs and collected in glass dishes. After egg procurement, the females were

quarantined in high marine salt for at least one week before returning to the recirculating aquatic system. The ovulated females

were not used until they rested for at least 3 months. To prepare sperms, adult males were euthanized with 0.2% benzocaine for

at least 20 min before dissection for isolating the testes. The isolated testes were kept in L-15 medium on ice and used within

oneweek. Sperm slurry was prepared by crushing 1/2 of a testis using a plastic pestle in 1ml of deionizedwater inside a 1.5-mlmicro-

fuge tube.

METHOD DETAILS

In vitro fertilization (IVF)
All IVF in this study were performed at room temperature (22 �C ± 0.5 �C). The procedures for IVF have been described previously.14

Briefly, 1ml of sperm slurry was evenly added onto amonolayer of eggs inside a glass dish collected as described above. The sperms

and eggs were mixed by gently sliding a plastic pestle on the surface of the glass dish. Five minutes after adding sperms, the glass

dish was flooded with�20ml of 0.13MMR, with all eggs submerged. At�30minutes post-fertilization (mpf), the fertilized eggs were

incubated with 20 ml of 2% L-cysteine in 0.13 MMR for 2-5 min and the jelly coats were removed by washing with 0.13 MMR for

multiple times. The embryos were sorted and kept in 0.13 MMR for further use.

Microinjection, cycloheximide treatment and collection of embryos
The procedures for microinjection have been described previously.13,14 Briefly, embryos at 1-cell stage (�35-40 mpf) were trans-

ferred into a microinjection chamber containing 3% Ficoll in 0.5 3 MMR. Embryos were microinjected with 10 nl of 50 mM

5-ethynyl uridine (EU) using a PLI-100 picoliter microinjector (Medical Systems, Greenvale, NY). The final concentration of EU inside

embryos is � 0.5 mM, as detailed previously.13 After microinjection, the embryos were transferred into a glass dish containing 3%

Ficoll in 0.5 3 MMR for 1-2 h before being transferred in 0.13 MMR to continue embryo development.

To prepare embryos for characterizing the nascent transcriptome in whole embryos (Figures 1 and S1), embryos from two clutches

(i.e., two individual frogs) were microinjected with EU as described above. EU-microinjected embryos developed to 5, 6, 7, 8 and 9

hours post-fertilization (hpf), respectively, were collected in microcentrifuge tubes (N = 20 embryos each), followed by complete

removal of residual medium before snap-freezing in liquid nitrogen. The biological replicates of samples were stored at -80 �C before

use. To distinguish maternal-zygotic (MZ) genes and zygotic-only (Z) genes during ZGA (Figures 1G–1K and S1H–S1L) based on the

presence of their transcripts in eggs (see below), eggs from two clutches were collected and the egg transcriptome was directly

compared to the nascent transcriptome from embryos at 5-9 hpf. The nascent transcriptome at 5-9 hpf from both experiments

(a total of four replicates) were used for analysis (see below).
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To prepare embryos to spatially characterize the nascent transcriptome in the animal pole (AP) and the vegetal pole (VP) regions

(Figures 2 and S2), embryos from a total of four clutches (i.e., four frogs) were microinjected with EU as described above. Embryos

were segmented via dissection using a hair knife to collect the AP (� top 1/3 region of embryo) and the VP (� bottom 1/3 region of

embryo). For one of the four clutches, EU-microinjected embryos developed to 6, 7, 8 and 9 hpf, respectively, and were then

dissected and collected in inmicrocentrifuge tubes (N = 30 segments each), followed by complete removal of residual medium before

snap-freezing in liquid nitrogen. Two technical replicates of samples were stored at -80 �C before use. For the remainder of the three

clutches, developing EU-microinjected embryoswere collected at 5, 6, 7, 8 and 9 hpf and dissected in the samemanner as above; AP

and VP regions were collected (N = 50 segments each). A total of five replicates (four biological replicates with one technical replicate)

were used for the spatial nascent transcriptome analysis.

To prepare embryos to characterize the effect of cell cycle lengthening on nascent zygotic transcription (Figures 3 and S3), em-

bryos from one clutch (e.g., one frog) were microinjected with EU as described above. Two replicates of EU-microinjected embryos

developed to 3, 4 and 5 hpf, respectively, were incubated in 0.13MMR (control) or 0.13MMRcontaining 0.2mg/ml of cycloheximide

(CHX) to block embryonic divisions andmaintain the cells in the interphase. Control embryos andCHX-treated embryos developed to

7.5 hpf were collected as described above and stored at -80 �C before use. For confocal imaging of nascent zygotic transcription in

single cells, control embryos and CHX-treated embryos at 7.5 hpf were fixed in 4%paraformaldehyde / 13MEM (100mMMOPS pH

7.4, 2 mM EGTA, and 1 mM MgSO4) solution in 2-ml scintillation vials by rotating for 2 hours at room temperature. Embryos were

completely dehydrated with methanol before being stored at -20 �C. To test whether CHX regulated nascent transcription is RNA

polymerase II dependent, 0.1 ng of a-amanitin was co-microinjected with 5-EU into embryos at 1-cell stage and the embryos

were treated with CHX and fixed as described above.

Cell cycle inhibitor incubation
To assess the effect of specific cell cycle inhibitors on arresting blastula cell cycles (Figure S3J), normal embryos were incubated with

100 mMofCdk inhibitors, including RO-3306 (Sigma, Cat# SML0569), JNJ-7706621 (Selleck Chemicals, Cat# S1249), AZD5438 (Sell-

eck Chemicals, Cat# S2621), BMS-265246 (Selleck Chemicals, Cat# S2014), and SKPin C1 (Selleck Chemicals, Cat# S8652),

respectively, from 5 hpf to 7.5 hpf. Untreated and DMSO-treated embryos were used as negative controls, and CHX (0.2 mg/ml)

treated embryos were used as positive controls. Live embryos at 7.5 hpf were imaged under a stereomicroscope using Leica Appli-

cation Suite X (LAS X) (Leica Microsystems, Germany).

RNA isolation, biotinylation and purification
Total RNAswere isolated using the RNeasyMini Kit (Qiagen), following the instructions provided by themanufacturer. Briefly, eggs or

EU-microinjected whole embryos or segmented AP and VP regions were addedwith 700 ml of Buffer RLT and homogenized by gentle

pipetting the samples up and down for multiple times until all embryos were completely dissolved. The homogenates were added

with 700 ml of 70% ethanol and the mixtures were transferred into the columns used for binding RNA. The columns were span at

13,000 rpm for 1 min. The columns were washed with 700 ml of Buffer RW1 and incubated with 80 ml of DNase I for 15 min at

room temperature. After DNase I incubation, the columns were added with 600 ml of Buffer RW1 and centrifuged at 13,000 rpm

for 1 min. The columns were washed twice with Buffer RPE and completely dried by centrifugation at 13,000 rpm for 2 min. The total

RNAs were finally eluted in 20 ml of RNase-free water.

To biotinylate RNA, 2.5-10 mg of total RNAs were incubated with a 20 ml reaction that contains 2 mM disulfide biotin azide, 50 mM

Hepes (pH 7.5), 1.25 mM CuSO4/THPTA mix and 10 mM ascorbic acid for 1 h at room temperature. The reaction was stopped by

adding 1 ml of 50mMEDTA. To precipitate the RNA, the reaction was addedwith 1ml of glycogen, 1 volume of 5M ammonium acetate

and 700 ml of chilled ethanol, incubated at -80 �C for overnight, and centrifuged at 13, 0003g for 20 min at 4 �C. The supernatant was

removed, and the pellet was washed twice with 700 ml of chilled 75% ethanol by centrifugation at 13, 0003g for 5 min at 4 �C. The
pellet was air dried and resuspended in 10 ml RNase-free H2O.

The nascent EU-RNA was purified using streptavidin beads following the instructions provided by the Click-iT Nascent RNA Cap-

ture Kit (Thermo Fisher Scientific, Cat# C10365), with minor modifications.65 The 10 ml biotinylated RNA from above was addedwith a

15-ml reaction mix that contains 12.5 ml of Click-iT RNA binding buffer, 0.2 ml of RNaseOUT Recombinant Ribonuclease Inhibitor and

2.3 ml of RNase-free water. The reaction was incubated at 69 �C for 5 min and added with 5 ml of Dynabeads MyOne Streptavidin T1

that were pre-washed with Click-iT reaction wash buffer 2 for three times. The reaction was incubated for 30 min at room temper-

ature. The beads were concentrated using a magnetic separator (Permagen) and sequentially washed with 50 ml of Click-iT reaction

wash buffer 1 for five times and wash buffer 2 for five times. The beads were resuspended in 5 ml of for Click-iT reaction wash buffer 2

and used directly for first-strand cDNA synthesis and subsequent library prep (see below).

EU-RNA-seq and analysis
To perform RNA-seq, cDNA libraries were prepared for total RNA isolated from embryos (‘All’), purified nascent EU-RNA (‘Bead’) and

the flowthrough that contains maternal, non-nascent RNA (‘Flowthrough’). cDNA libraries were prepared using the Universal RNA-seq

with NuQuant kit (NuGEN, Cat# 0364), following the manual provided by the manufacturer. Ribosomal RNAs were depleted using the

custom designed AnyDeplete Probe Mix for Xenopus laevis provided by the kit. The cDNA libraries were further analyzed following the

instructions specified in respective kits below. The quality of cDNA libraries was analyzed using the Agilent High Sensitivity DNA Kit

(Agilent, Cat# 5067-4626) in the Agilent 2100 Bioanalyzer System (Agilent Technologies, CA). The cDNA libraries were subjected to
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size selection using SPRIselect beads (BeckmanCoulter, Cat# B23317). The concentrations of cDNA libraries were quantified using the

NEBNext Library Quant Kit (NEB, Cat# E7630). The individual cDNA libraries were pooled at equal molar ratios and the pooled cDNA

libraries were sequenced using the NSQ 500/550 Hi Output KT v2.5 (75 CYS) (Illumina, Cat# 20024906) in the NextSeq 500 sequencer

(Illumina, CA). To quantify transcripts, raw sequence data (fastq files) were aligned to Xenopus laevis genome build 9.2 using salmon

v0.12.0.54 Data were normalized for sequencing depth using DESeq2 (bioconductor v3.8).55 To map the transcripts to the genome,

the STAR (v 2.7.0) aligner56 was used and the peaks were visualized in the Integrative Genomics Viewer (IGV, v2.8.0).57

To circumvent the issue of potential nonspecific binding of maternal transcripts to beads, we decided to use the net increase of

reads at each blastula timepoint, subtracting as background the 5 hpf reads. When defining the list of nascent transcribing genes

from 5-9 hpf, which we termed the nascent list, the nascent transcriptome data from whole embryos was filtered using the following

criteria for each replicate: (1) the gene is continuously transcribed from 5 hpf to 9 hpf, and (2) at least with an increase of 50 reads and

1.5-fold induction from 5 hpf to 9 hpf (using average reads of 8-9 hpf vs. average reads of 5-6 hpf). The final list was determined for the

genesmeeting these criteria in all replicates, which included 2577 genes (used in Figures 1D–1F, S1D, and 3C–3G). To categorize the

nascent list into subgroups ofMZ vs Z genes (Figures 1G–1K andS1H–S1L), the presence of transcripts detected in the eggwas used

to determine their identities: Z genes were those with% 5 reads in the eggs and MZ genes were those with > 5 reads. The maternal

genes in the rest of all genes were those with the presence of transcripts > 100 reads in the egg but with no transcription in the Bead.

To select the genes most highly transcribed at the MBT from previous studies, the transcriptome data from Session et al.19 (Fig-

ure S1E) and Yanai et al.20 (Figure S1F), respectively, were filtered using the following criteria: at least with an increase of 20 reads

and 1.5-fold induction from Stage 8 (st08) to Stage 10 (st10).

To select genes for categorizing their spatial patterns of activation (Figures 2 and S2), the AP-VP nascent transcriptome data was

filtered using the following criteria for each replicate: (1) the gene is continuously transcribed from 5-9 hpf at either the AP or the VP,

and (2) at least with an increase of 10 reads from 5 or 6 hpf to 9 hpf (using average reads of 8-9 hpf vs. average reads of 5-6 hpf). The

final list was determined for the genes meeting these criteria in at least three out of five replicates, which included 882 genes. To

determine the activation patterns for each gene, the reads at both AP and VP from 5 hpf to 9 hpf were first normalized to their

mean reads and then categorized using the following criteria for each pattern, respectively: (1) AP regional: both the total reads

and the reads at 8-9 hpf were at least 10-fold higher in the AP than the VP; (2) AP early, VP delay: both the total reads and the reads

at 8-9 hpf were 1.5-10-fold higher in the AP than the VP; (3) VP regional: both the total reads and the reads at 8-9 hpf were at least

10-fold higher in the VP than the AP; (4) VP early, AP delay: both the total reads and the reads at 8-9 hpf were 1.5-10-fold higher in the

VP than the AP; (5) Similar: both the total reads and the reads at 8-9 hpf were within 1.5-fold difference between the VP and the AP.

The resulting categorized lists of genes were further manually inspected to remove a small portion of genes with inconsistent profiles

between replicates (at least three out of five replicates) or to correct their categorization based on expression profiles. To determine

the activation onset time for each gene (Figures 2B and S2B), we adapted themethod described in Jukam et al.25 by fitting themean-

normalized reads with a smooth spline function and used the time reaching 20% of the maximum reads (the maximum of AP and VP

combined) as the onset time. The fittings were manually inspected and corrected for some genes by fitting with an exponential or

sigmoidal function optimal for them. To determine the average activation onset time for each pattern (Figure S2C), the same fitting

of a smooth spline function was performed except for using the average of the mean-normalized reads for the AP and VP in each

pattern. In Figure 2B, to compare and plot the activation onset time for those genes that were not activated during 5-9 hpf at AP

or VP, their activation onset time was set to 9.1.

Lists of ectoderm and endoderm genes (Figure 4) were defined from previous studies. For ectoderm genes, we used the data from

Blitz et al.26 by selecting the animally enriched genes in gastrula of Xenopus tropcalis and matching their names in Xenopus laevis,

which generated a list of 111 genes. For endoderm genes, we used the data from Sinner et al.27 and matched their names in Affy-

metrix microarray with the ones in Xenopus laevis genome build 9.2 at Xenbase, which generated a list of 172 genes. Because many

germ-layer specific genes are not expressed or very lowly expressed in blastula embryos, to characterize the effect of CHX on germ

layer expression by 7.5 hpf (Figures 4D–4F and S4A–S4D), the ectoderm and endoderm genes were filtered for those genes with an

increase of at least 10 reads from 5 hpf to 7.5 hpf in the control embryos.

Functional enrichment analysis
Gene ontology (GO) analysis for genes with functional enrichment in biological processes was performed using clusterProfiler

(v4.2.0).58 The top 10 of the most significantly enriched GO terms were selected and the -log10(p.adjust) was used as the proxy of

enrichment. The enrichment of motifs at the promoter regions of CHX down-regulated genes or up-regulated endoderm genes

were performed using HOMER (v4.11).59 The names of transcription factors that bind the enriched motifs were manually inspected

and confirmed their presence in Xenopus laevis.

ATAC-seq and ChIP-seq analysis
To validate the chromatin accessibility of nascent transcripts uniquely detected by EU-RNA-seq (Figures S2M and S2N), the public

ATAC-seq data (GEO accession number: GSE138905) from the animal caps of Xenopus laevis embryos at stages 10 and 12 were

analyzed.66 Three replicates of each stage were included in the analysis. The Illumina Nextera adapter sequences were trimmed us-

ing Cutadapt (v3.7)60 before the ATAC-seq sequences were aligned to the Xenopus laevis genome build 9.2 using Bowtie 2

(v2.3.4.1)61 and BAM files were generated using Samtools (v1.1).62 The peak calling was made using MACS2 (v2.2.7.1),63 and the

heatmap and profile plots for the ATAC-seq peaks were generated using deepTools (v3.5.1).64
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To compare the RNA Pol II binding and H3K4me3 mark between ectoderm and endoderm genes (Figures 4G and S4I), the public

ChIP-seq data (GEO: GSE76059) from stage 10.5 Xenopus laevis embryos were analyzed.19 The ChIP-seq sequences were similarly

processed to ATAC-seq sequences as described above, except for without adaptor removal.

RT-PCR and real-time PCR
Total RNAs were isolated as described above. cDNA was generated by using the SuperScript III First-Strand Synthesis System (In-

vitrogen, Cat# 18080-051), following the instructions provided by the product. Briefly, for each sample 2.5 mg of total RNA wasmixed

with 1 ml of 50 ng/ml random hexamers and 1 ml of 10mMdNTPmix tomake a reaction of 10 ml, which was incubated at 65 �C for 5min

and placed on ice for at least 1 min. Each reaction was added with 10 ml of cDNA Synthesis Mix, which was composed of 2 ml of 103

RT buffer, 4 ml of 25 mM MgCl2, 2 ml of 0.1 M DTT, 1 ml of RNaseOUT (40 U/ml) and 1 ml of SuperScript III RT (200 U/ml), and it was

incubated at 25 �C for 10 min followed by at 50 �C for 50 min. The reaction was terminated by incubation at 85 �C for 5 min. To elim-

inate RNA contamination, 1 ml of RNase H was added to each reaction by incubation at 37 �C for 20 min.

RT-PCRwas performed bymixing 100 ng of cDNAwith 10 ml of the 23DreamTaqGreen PCRMasterMix (Thermo Fisher Scientific,

Cat# K1081) and 0.25 mM of each gene-specific Forward and Reverse primers (see key resources table) to make a total reaction of

20 ml, followed by performing PCR in a Bio-Rad C1000 Touch thermal cycler: 95 �C for 3 min; 25-35 cycles of 95 �C for 30 s, 51-55 �C
for 30 s (note that the choose of annealing temperature is primer dependent) and 72 �C for 30 s; and 72 �C for 10 min. The PCR prod-

ucts were subjected to electrophoresis in 2% agarose gel containing 0.5 mg/ml of ethidium bromide and the gene-specific bands

were visualized under ultraviolet light in a Bio-Rad Gel Doc EZ Imager.

Real-time PCR was performed by mixing 100 ng of cDNA with 10 ml of the 23 PowerUP SYBR Green Master Mix (Thermo Fisher

Scientific, Cat# A25742) and 0.5 mM of each gene-specific Forward and Reverse primers (see key resources table) to make a total

reaction of 20 ml (in triplicates), followed by performing PCR in a QuantStudio 3 Real-Time PCR System (Applied Biosystems) with the

standard cycling mode: 50 �C for 2 min; 95 �C for 2 min; 40 cycles of 95 �C for 15 s, 56 �C for 15 s and 72 �C for 1 min. The melt curve

stage was performed by the following conditions: 95 �C for 15 s (1.6 �C/s), 60 �C for 1min (1.6 �C/s) and 95 �C for 15 s (0.15 �C/s). The
fold difference in expression level between AP and VP was calculated by 2-DCt(AP-VP), where DCt(AP-VP) was the average Ct(AP) of

triplicates – average Ct(VP) of triplicates.

Confocal imaging nascent transcripts in wholemount embryos ad image analysis
Confocal imaging of nascent transcripts in wholemount embryos have been described previously.13,14 Briefly, the fixed EU-micro-

injected control and CHX-treated embryos were sequentially rehydrated with 75%, 50% and 25% methanol in 0.53 SSC (75 mM

NaCl and 7.5 mM sodium citrate) for 10 min each, followed by washing with 0.53 SSC for three times. Embryos were bleached in

the solution of 5% formamide/2% H2O2/0.53 SSC for 6 h under light. Embryos were briefly rinsed with 0.53 SSC for three times,

followed by washing with 13 TBST (containing 0.1% vol/vol Triton X-100) for 30 min each of six times and with 13 TBS for

10 min each of three times. Embryos were incubated with 25 mM TAMRA-azide, 100 mM Tris-HCl pH 8.5, 1 mM CuSO4, and

100 mM ascorbic acid for 12 h at room temperature. Embryos were extensively washed with 13 TBST at room temperature for

1 day by changing buffer every 2 h. Embryos were incubated with TO-PRO-3 (1:500 dilution) overnight at 4�C, followed by washing

with 13 TBST for 1 day at room temperature by changing buffer every 2 h. Embryos were completely dehydrated in anhydrous meth-

anol by changing it for several times. Embryos were cleared in a mixture of 1 part of benzyl alcohol and 2 parts of benzyl benzoate

(BABB) for 24 h before confocal imaging. Confocal imaging was performed with the ZEN software on a Zeiss LSM710 confocal mi-

croscope. EU-RNA and TO-PRO-3 were imaged with a frame size of 1,024 pixels3 1,024 pixels using lasers 561 nm (0.15% power)

and 633 nm (10% power), respectively, without saturating signals. Z-stacks were collected at an interval of 2 mmusing the Plan-Apo-

chromat 253 / 0.8 immersion oil objective. Images were processed in Fiji (NIH) and presented as Z-projections with maximum inten-

sity for several selected slices.

To assess the effect of CHX on DNA synthesis (Figure S3A), DNA-integrated TO-PRO-3 signal in the nucleus was quantified using

confocal image stacks collected using the 253 objective. A total number of 50-70 cells from five embryos were analyzed for each

group. The boundaries of nuclei and cell of individual blastomeres weremanually demarcated in Fiji (NIH) using the slice with the high-

est signal of the TO-PRO-3 channel by specific DNA signal and non-specific background signal, respectively. TO-PRO-3 signal in the

nucleus as well as in the cell was measured and the net nuclear TO-PRO-3 signal was calculated by subtracting the cytoplasmic

background signal from the nucleus signal. The nuclear TO-PRO-3 amount was calculated by multiplying the net nuclear

TO-PRO-3 signal with the nucleus volume assuming a spherical shape of the nucleus.

To quantify the nascent EU-RNA intensity (Figure 3K) and cell size (Figure S3H) of single blastomeres, confocal image stacks

collected using the 253 objective were used. For proper comparison between groups, only blastomeres in the animal pole regions

within 100 mm depth of the image stacks were analyzed. For each group, a total number of 80-160 cells from at least three embryos

were analyzed. The nucleus and cell boundaries of individual blastomeres were manually demarcated in Fiji (NIH) using the slice with

the highest signal of the TO-PRO-3 channel by specific DNA signal and non-specific background signal, respectively. EU-RNA signal

in the nucleus as well as in the cell was measured using the EU-RNA channel and the net nuclear EU-RNA signal was calculated by

subtracting the cytoplasmic background signal from the nucleus signal. The nuclear EU-RNA amount was calculated by multiplying

the net nuclear EU-RNA signal with the nucleus volume assuming a spherical shape of the nucleus. Cell size, represented as cell

diameter or cell volume, was also calculated by assuming a spherical shape of blastomeres.
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QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical parameters, including sample numbers, mean and standard deviation or error, were included in Figures and

Figure legends. In Figure 2B, the statistical significance was determined by Student’s t test to compare the activation onset time be-

tween the AP and the VP. In Figures 3K and S3A, the statistical significancewas determined by one-way ANOVA (Fisher’s LSD test) to

compare the nuclear EU-RNA level and cell size between control and CHX treatment at various developmental stages. *p < 0.05;

**p < 0.01; ***p < 0.001; ****p < 0.0001; ns, not significant. In other plots where p values or adjusted p values (p.adjust) were used,

e.g. for functional enrichment and motif enrichment, the p values were calculated and provided by individual packages in R.
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Figure S1. EU-RNA-seq to characterize the nascent transcriptome in early Xenopus embryogenesis. Related to 
Figure 1.
(A) Reproducibility of nascent transcriptome library reads among replicates. Nascent EU-RNA-seq was performed on 
two clutches of early embryos (Rep 1 and Rep 2) from 5-9 hpf. Each dot represents individual genes with rlog reads 
quantified by DESeq2. Red line: linear fitting of the data in each plot; R squared values for fit.
(B) Beads biochemically capture the nascent transcriptome. Increase in nascent EU-RNA-seq reads each hpf compared 
to pre-ZGA, 5 hpf. Each dot represents individual genes with rlog reads averaged from duplicates quantified by DESeq2. 
The numbers are genes enriched above 1.5-fold threshold (dashed lines). Red and blue dots indicate increased and 
decreased nascent transcripts at each hpf as compared with 5 hpf, respectively.
(C) Schematic describing filtering the transcription data to define the bona fide nascent transcriptome for whole embryos 
at 5-9 hpf. The nascent list is further split into zygotic-only (Z) and maternal-zygotic (MZ) genes based on absence or 
presence of reads in the egg. 
(D-F) Enhanced sensitivity: comparison of reads levels from nascent EU-RNA-seq versus total RNA-seq. (Left) 
Summed reads for selected nascently transcribing genes (D, N = 2577), top genes from Session et al. (E, N = 591) and 
top genes from Yanai et al. (F, N = 696) from 5-9 hpf. Red, EU-RNA-seq for bead-purified nascent RNAs; Orange, total 
RNA-seq for all RNAs. Exponential fitting is shown with 95% CI. (Right) Enrichment of reads in nascent transcriptome 
as compared with total transcriptome over time. The ratio of summed Bead/All reads was calculated for each hpf from 
6-9 hpf.
(G) Genome browser view of reads for representative zygotic genes. Comparing total RNA-seq (top, All; orange), 
nascent EU-RNA-seq (middle, Bead; red) and maternal RNA-seq (bottom, Flowthrough; blue). The scales are set to the 
same level for each gene. Reads for these zygotic genes are higher in nascent (bead) transcriptome and absent from 
the maternal transcriptome (flowthrough), indicating biochemical separation of nascent from maternal.
(H-J) Composition of genes or reads expressed during ZGA. 
(H) Percentage of genes that are unexpressed, maternal, or induced: maternal-zygotic (MZ) vs. zygotic (Z). 
(I) Percentage of total reads from nascent transcriptome (Bead) that can be categorized. 
(J) Fraction of assigned reads from nascent transcriptome (Bead) as development progresses.  
(K and L) Summed reads for MZ (K) and Z (L) genes from 5-9 hpf. Showing increase of reads, subtracting background 
(5 hpf). Exponential fitting is shown with 95% CI.
(M) Heatmap for ATAC-seq peaks for genes whose activation was uniquely detected by EU-RNA-seq during 5-9 hpf in 
embryos at stages 10 and 12, respectively. Three replicates from each stage are shown (data source: Esmaeili et al., 
Dev Biol 2020). The regions of transcription start site (TSS) +/- 1kb are shown for each gene (each row represents each 
gene; N = 240 in total). The indicated regions of majority genes are accessible by stage 10 and further increased at 
stage 12. 
(N) Profile plot for ATAC-seq intensity in M. 

M
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Figure S2. Characterizing spatial patterns of single gene activation in early Xenopus embryogenesis. Related to 
Figure 2.
(A) Scheme for filtering genes used for analysis of activation patterns at the animal pole (AP) and the vegetal pole (VP). 
(B) Representative gene profiles to demonstrate the determination of activation onset time for individual genes. Genes 
tfap2a.L (top panels) and mixer (bottom panels) are shown as examples. DESeq2-normalized reads for 5 replicates 
(Rep 1-5) and their average (Rep Mean) from the nascent transcriptome at the AP (red) and the VP (blue) at 5-9 or 6-9 
hpf. Mean-normalized reads were used for fitting with a smooth spline to determine the activation onset time at the AP 
and VP, respectively, based on reaching 20% of the maximum reads.
(C) Categorization of 5 distinct spatial patterns for single gene activation. From left to right: schematic; mean-normalized 
reads for individual genes and their average; smooth spline fitting for the average mean-normalized reads to determine 
the activation onset time in AP and VP; histogram showing distribution of activation onset time for each gene within a 
category for the AP (red) and the VP (blue); genome browser view of example genes for each pattern. AP, red; VP, blue.
(D) RT-PCR for example genes in the patterns of ‘AP Early, VP Delay’ (top panels) and ‘VP Early, AP Delay’ (bottom 
panels). Internal control was used for normalization. NTC, no-template control. 
(E) Real-time PCR for an example gene grhl3.S in the AP and VP. The expression level was measured from triplicates 
and the fold difference between AP and VP is represented as 2-∆Ct(AP-VP), where Ct(AP-VP) was calculated from the aver-
age Ct values of triplicates for AP and VP, respectively. Note that the expression was not detected at 5 and 6 hpf, and 
therefore the differences between AP and VP at these time points are not shown. As a reference for the expression 
pattern, the inset plot shows the average DESeq2 Reads by EU-RNA-seq in the AP and VP regions, respectively.
(F-I) Top 10 enriched GO terms for patterned genes: ‘AP Early, VP Delay’ (F), ‘VP Regional’ (G), ‘VP Early, AP Delay’ (H) 
and ‘Similar’ (I). The GO terms for ‘AP Regional’ genes could not be enriched due to small number of genes in this list.

(Figure S2 Continued)
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Figure S3. Effect of CHX on nascent zygotic transcription. Related to Figure 3.
(A) DNA amount in nucleus of control embryos or embryos treated with cycloheximide (CHX). DNA was stained with 
TO-PRO-3 and the nuclear DNA amount was calculated by multiplying the nuclear intensity (subtracted with cytoplasmic 
background) by the volume of nucleus. Analyzed cell numbers from representative images: N = 66 (Control 5.5 hpf), N 
= 61 (Control 7.5 hpf), and N = 57 (CHX 5-7.5 hpf). Data are represented with Mean + SD. ns, not significant.
(B-C) Increase in nascent transcription from 5 to 7.5 hpf for control (A) and cell cycle elongated (B) embryos. Using all 
genes in the genome. Each dot represents individual genes with log2 reads averaged from duplicates quantified by 
DESeq2. Differentially enriched genes in each group are labelled in red (up) and blue (down), based on a 1.5-fold 
threshold (dashed lines) and padj <0.05.
(D) Comparison of log2 reads from cell cycle elongated (CHX) versus control embryo at 7.5 hpf, during widespread ZGA 
onset. Each dot represents each gene in the genome.
(E) Volcano plot showing fold-change in expression comparing cell cycle elongated (CHX) versus control embryos. 
Labels show top 20 genes most differentially expressed. The numbers of up-regulated (red) and down-regulated (blue) 
genes by CHX are indicated. The horizontal dashed line indicates 1.3 (a threshold of padj = 0.05) and the two vertical 
dashed lines indicate -1 and 1, respectively (a threshold of 2-fold change).
(F) Comparison of gene annotation information between down-regulated (top) and up-regulated (bottom) genes in the 
cell cycle elongated embryos (CHX) compared to control at 7.5 hpf. Showing percentage of genes that are named or 
unnamed, on chromosomes or unassigned scaffold contigs, or both.
(G) Genome browser view of example genes only weakly induced by cell cycle elongation (CHX) compared to control.
(H) Quantification of cell size in control and CHX-arrested embryos from 5 hpf. Cell size is represented as cell diameter 
(µm, Left) and cell volume (nl, Right) calculated by assuming a spherical shape of blastomeres. A total of 80-160 cells 
from at least three embryos were analyzed for each group. Data are represented as mean + SD. 
(I) RT-PCR for zygotic genes early activated in CHX-arrested embryos from 5 hpf to 5.5-8 hpf as compared with control 
embryos. The gene odc.S is used as a loading control. NTC, no-template control. LC, low contrast; HC, high contrast.
(J) Inhibitor incubation from 5-7.5 hpf to characterize cell cycle arrest in blastula stage embryos. The final concentration 
in media is 0.2 mg/ml for CHX and 100 µM for the indicated Cdk inhibitors (~ 1,000 to 10,000-fold higher than respective 
Ki). Untreated and DMSO-treated embryos are used as controls. Only CHX is able to permeate Xenopus embryos o 
rapidly induce cell cycle arrest and Cdk inhibitors fail to arrest embryo division. Scale bar, 1 mm.
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Figure S4. Premature cell cycle elongation over-induces the ectoderm germ layer program. Related to Figure 4.
(A and B) Heatmaps for log2 reads of the ectoderm (A) and endoderm (B) genes with or without CHX treatment. Data 
shown are selected for genes that are induced in control embryos from 5-7.5 hpf. The up-regulated (red), down-regulat-
ed (blue) and not significantly changed (grey) genes are categorized based on a 1.5-fold difference threshold.
(C) Heatmaps for log2 ratio of gene induction in CHX/Control for ectoderm (left) and endoderm (right) genes at 7.5 hpf.
(D) Histogram for log2 ratio of gene induction in CHX/Control for ectoderm (red) and endoderm (blue) genes at 7.5 hpf. 
Ectoderm is largely over-induced by cell cycle elongation; endoderm is largely under-induced.
(E) Top 10 enriched GO terms for genes that are significantly over-induced by cell cycle elongation (CHX).
(F) Genome browser view of example ectoderm genes over-induced in CHX-treated embryos.
(G and H) No correlation between activation onset time and log2 ratio of gene induction in CHX/Control for ectoderm (G) 
and endoderm genes (H) as in A and B.
(I) Profile plots for ChIP-seq peaks of H3K4me3 for ectoderm and endoderm genes, respectively, in embryos at stage 
10.5. The regions of transcription start site (TSS) +/- 2kb from two replicates are shown (data source: Session et al., 
Nature 2016). The level of H3K4me3 in the indicated regions is higher in ectoderm genes than endoderm genes.
(J) Mechanistic regulation of ZGA via cell size, N/C ratio and cell cycle elongation in Xenopus early embryo. During Xen-
opus early development, a fertilized egg undergoes rapid reductive cell divisions without cell growth until mid-blastula 
stages, resulting in progressive reduction in blastomere cell size. Because the DNA amount remains constant in each 
cell, the N/C ratio increases. When the cell size or N/C ratio reaches a critical threshold, blastomeres elongate their cell 
cycle via Chk1, potentially via limiting replication factors and fork stalling, or reduced histone dependent repression of 
Chk1; RNAPII occupancy may also impact fork stalling. Early rapid divisions block zygotic transcript accumulation 
because interphase duration is too short for transcriptional accumulation. Once the cell cycle is elongated, a majority of 
nascent transcripts quickly build up, providing the basis for widespread gene expression during the major wave of ZGA.
(K) A Waddington model for germ layer initiation whose timing is linked to regulated ZGA: cell size reduction down the 
landscape determines the rate at which ZGA initiates and subsequent germ layer specification. The fertilized egg under-
goes asymmetric divisions generating small cells at the animal pole (AP), the presumptive ectoderm, and large cells at 
the vegetal pole (VP), the presumptive endoderm. Smaller AP cells reach a cell size threshold faster than the large VP 
cells. AP cells are the presumptive ectoderm and thus early ZGA leads to earlier expression of the ectoderm program. 
VP cells are the presumptive endoderm and delayed ZGA onset delays expression of the endoderm program. Note: the 
timing of initiation of the mesoderm program is inferred.
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